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A Comparison of Actuarial Financial Scenario Generators 
 
 

Abstract 
 

Significant work on the modeling of asset returns and other economic and financial 

processes is occurring within the actuarial profession, in support of Risk-Based Capital 

analysis, Dynamic Financial Analysis, pricing embedded options, solvency testing and 

other financial applications.  Although the results of most modeling efforts remain 

proprietary, two models are in the public domain. One is the CAS-SoA research project, 

Modeling of Economic Series Coordina ted with Interest Rate Scenarios.  The other was 

developed as the result of American Academy of Actuaries study in support of the C-3 

Phase 2 RBC for Variable Annuities.  Both data sets provide practitioners with a large 

number of iterations for key financial values, including short- and long-term interest rates 

and equity returns.  This paper examines the role of stochastic modeling in actuarial 

work, focusing on a comparison of the underlying models and their outputs, to determine 

the impact of the use of different assumptions and parameter selection on the modeling 

process. 
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1.  Introduction 
 
In May, 2001, the Casualty Actuarial Society (CAS) and the Society of Actuaries (SoA) jointly 

issued a request for proposals on the research topic “Modeling of Economic Series Coordinated 

with Interest Rate Scenarios.”  The objectives of this request were to develop a research 

relationship with persons selected to investigate this topic;  produce a literature review of work 

previously done in the area of economic scenario modeling;  determine appropriate data sources 

and methodologies to enhance economic modeling efforts relevant to the actuarial profession;  

and produce a working model of economic series, coordinated with interest rates, that could be 

made public via the CAS/SoA websites and used by actuaries to project future economic 

scenarios.  Categories of economic series to be modeled included interest rates, equity price 

levels, inflation rates, unemployment rates, and real estate price levels.  In addition to providing 

the financial scenario generator model, this project also produced a set of output scenarios for 

these economic series that could be used directly in financial analysis.  This work is summarized 

in Ahlgrim et al ([2] and [3]). 

The Life Capital Adequacy Subcommittee (LCAS) of the American Academy of 

Actuaries (AAA) recommended in a series of reports ([4], [5], and [6]) that life insurers 

implement new tests of capital adequacy which utilize stochastic models for scenario testing of 

variable products with guarantees.  Although the ultimate recommendation is for each insurer to 

develop its own models, the LCAS encouraged the AAA to provide 10,000 pre-packaged 

scenarios that could be used as an alternative to internal models.   

As a result of these two projects, practitioners now have a choice between two publicly 

available financial scenario generators.  This paper will serve to explain the underlying processes 
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used in each of the models, compare the output values for common factors, and describe the 

issues that should be considered when using these models. 

The remainder of this paper is organized as follows.  Section 2 describes the historical 

development of actuarial modeling of economic and financial processes, highlighting the growth 

in popularity of stochastic modeling.  Section 3 provides some background on risk-based capital 

which has become one of the primary uses of stochastic modeling.  Section 4 discusses the 

mathematical and economic details underlying each of the two publicly available financ ial 

scenario models.  Section 5 analyzes and compares the output and results from each model.  

Section 6 illustrates the impact these differences using two separate actuarial applications.  

Section 7 concludes. 

 

2. Stochastic Modeling 

Actuarial analysis has progressed through several stages of development regarding the use of 

economic variables.  Initially, the standard approach was to use deterministic values for interest 

rates, equity returns and other key financial variables.  Judgment was used to estimate the range 

of expected outcomes and to value embedded options such as investment return and minimum 

benefit guarantees.  This approach often led to the mispricing of key features of insurance 

policies and consequent financial difficulties for a number of insurers.  Many of these problems 

were due to inadequately reflecting the potential risk and volatility associated with dynamic 

economic and financial conditions.   

Given the disappointing results of deterministic assumptions, actuaries began to 

recognize the inherent uncertainty surrounding economic variables through predetermined 

scenarios.  For example, New York regulation 126 requires insurers to test asset adequacy, and 
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assess their resulting hypothetical financial conditions, under seven prescribed interest rate 

scenarios.  Although these prespecified scenarios marked an improvement over the deterministic 

approach, the use of a limited number of scenarios provided no indication of the relative 

frequency of any particular outcome, and typically did not reflect the full range of economic 

conditions that could be expected to occur.   

The latest stage in actuarial analysis has been the development of stochastic models to 

reflect the underlying uncertainty of economic and financial variables (Wilkie, [17], [18] and 

Hibbert, Mowbray and Turnbull [11]).  When these sophisticated models are properly developed, 

they can be used to more accurately price embedded options in insurance contracts, to set 

appropriate solvency margins for diverse insurance operations and to evaluate alternative 

operational choices within an insurer.  Stochastic models form the basis of dynamic financial 

analysis (DFA), in which the underwriting and investment components of an insurance company 

are evaluated, in aggregate, under a large number of potential future environments.  Stochastic 

models are also used in regulation to set Risk-Based Capital (RBC) levels and by rating agencies 

to establish company ratings.   

One of the major concerns raised by the Morris Review of Actuarial Profession in Great 

Britain [14] is that actuaries failed to adequately reflect particular interest rate paths and equity 

returns over the last decade.  Recent advances in the field of financial economics, combined with 

the increased power and speed of computers, have provided actuaries with powerful stochastic 

modeling tools.  However, understanding the diverse models that have been proposed, and 

appreciating their underlying philosophical and technical differences, is a significant challenge.   
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3. Risk Based Capital 

One of the primary uses of stochastic models is in establishing regulatory capital requirements 

for insurers.  The history of capital standards in insurance shares a similar progression to 

actuarial assumptions for financial variables.  Initial capital standards were simply flat amounts 

that did not reflect relative risk levels.  Minimum margin requirements for European insurers 

began to be set based on the risks inherent in a company.  By the the mid-1990s, regulation in the 

United States, Japan and other countries moved to a risk-based capital (RBC) system to define 

the minimum level of capital an insurer must hold to avoid imposition of regulatory controls.  

The formula attempted to better correlate an insurer’s inherent risk with its required surplus 

position.  To determine target surplus amounts, RBC factors (or loads) are applied to statutory 

statement data.  Whereas the most dominant risks of life insurers are asset and investment risks, 

liability and pricing risks are more crucial for property- liability insurers.   

 

3.1 RBC Risk Types 

Since the risks have different consequences for each type of insurer, separate RBC formulas have 

been developed.  While the relative weights of risks may be different, the types of risks faced by 

insurers are ident ical.  Some of these include: 

• Asset or investment risks.  Capital is required to offset the potential loss in market value 

of the insurer’s asset portfolio.  Higher factors are used for classes of assets that 

inherently have more risk.  For example, the RBC factor applied to stocks is significantly 

higher than investment grade bonds. 

• Insurance/Underwriting risks.  Given the inevitable random fluctuations in an insurer’s 

loss experience, risk-based capital is used to protect policyholders from the inherent 
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uncertainty in an insurer’s liabilities.  Since the risk characteristics of each line of 

business are unique, different capital charges are separately applied to each product.  For 

life insurers, RBC charges are applied to the net amount of risk over and above 

established reserves.  For property- liability lines, the RBC charge is applied to existing 

loss reserves and written premium amounts. 

• Business risks. These charges stem from various risks that may not be covered by other 

RBC charges, such as loan guarantees to subsidiaries and reinsurance default.  While 

measuring these risks is difficult, the general approach is based on the potential 

assessment by state guaranty funds.   

Life insurers also include a charge for asset- liability management (ALM) risk.  In addition to 

the capital charges levied to reflect the underlying asset risk, an additional layer of risk is present 

if the values of insurer liabilities are not perfectly coordinated with asset movements.  

Traditional asset/liability risk is based on the potential mismatch of interest rate sensitivities 

between the invested assets of the insurer and their policy obligations.  For example, if an insurer 

attempts to obtain a higher interest rate by extending the maturity of their bond portfolio (with no 

change in the duration of liabilities), the insurer has increased its interest rate exposure.  Should 

yields increase, the value of assets will decline more than the value of the liabilities and the 

surplus position of the life insurer is impaired.  Given the potential for interest rate risk 

mismatches, the insurer is required to hold a larger amount of capital to support this risk.  In the 

life insurer RBC formula, these risks are termed C-3 risks.  In contrast, the value of liabilities for 

property- liability insurers remains fairly stable with respect to interest rate changes since 

statutory reserves are not discounted, although the market value of the liabilities would be 
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impacted by interest rate changes (see Ahlgrim et al [1] and D’Arcy and Gorvett [8] for a fuller 

analysis of this issue).   

In the early development of the RBC formula, C-3 risks were coined interest rate risks.  

Traditional life insurance products are affected by interest rates since the value of policy benefits 

and policyholder options is closely related to interest rate movements.  The potential mismatch 

between the cash flows of assets and liabilities are most severe with products that have 

substantial favorable policyholder guarantees (embedded options), notably single premium life 

products and annuities with rate guarantees.  Recent life insurance product development, 

especially variable annuities and other equity indexed products, pose additional challenges given 

the heightened sensitivity of liability values to changes in stock market prices.  Therefore, the 

nature of C-3 risks now encompasses broader asset/liability matching risks, not just interest rate 

risk. 

 

3.2 American Academy of Actuaries’ RBC Guidance 

Over time it became evident that the one-size-fits-all application of RBC factors to assess C-3 

risk was insufficient to adequately differentiate weakly capitalized insurers from adequately 

capitalized ones.  Given the development of all types of product variations issued by insurers, it 

was recognized that a single factor which blankets all insurance products would not fit every 

situation.  At the request of the National Association of Insurance Commissioners (NAIC), the 

Life Risk Based Capital Task Force of the American Academy of Actuaries began to investigate 

alternative approaches to better reflect C-3 risk of life insurers.   

  In October of 1999, the Task Force released its “Phase I Report” [4] which provides 

initial guidance for life insurance companies to measure ALM risks.  The report focuses on 
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products with substantial interest rate guarantees, primarily annuities and single premium life 

products.  These guidelines were implemented effective December 31, 2000.   

Building upon the modeling techniques that became widespread for asset adequacy 

testing, the task force recommended scenario testing as a tool for establishing appropriate capital 

standards instead of the application of RBC factor loadings.  The Academy’s aim is to set capital 

requirements based on the 95th percentile of the distribution stemming from interest rate risks.  

The Academy’s approach stresses modeling under real world probability measures.  While the 

risk neutral measure is important for pricing, it is not useful when estimating the tails of the 

distribution which ultimately determines the risk exposure for life insurers. 

To facilitate development of internal proprietary stochastic models, the Academy 

provides specific guidance on generating interest rate scenarios.  In lieu of developing their own 

models, companies may choose to use pre-packaged scenarios, which are posted on the 

Academy’s website.   Details of their interest rate model are described in Section 4. 

The Phase I report acknowledges that C-3 risk consists of more than just interest rate risk.  

Recent product innovation also incorporates significant equity risk and has greatly expanded the 

asset/liability risks of insurers.   In 2005, the Academy’s task force (now under the name Life 

Capital Adequacy Subcommittee or LCAS) addressed the equity related component of C-3 risk 

by releasing its “Phase II report” [6].  These guidelines include “certain standards that must be 

satisfied” when developing equity return scenarios.  For example, Appendix 2 of the June 2005 

report includes a “table of calibration points” as a cumulative distribution function of stock 

returns over various investment horizons.  

The LCAS report describes several reasonable approaches to equity modeling.  All of these 

approaches are variations and extensions on the Black-Scholes geometric Brownian motion 
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assumption for stock price movements.  While not limiting actuaries to those included, the 

Academy’s report specifically mentions three equity simulation models: 

• Independent lognormal (ILN), where (continuous) stock returns are normally distributed.  

However, the report highlights the fat-tailed nature of historical stock returns over short 

horizons which create some difficulty for the ILN approach. 

• Two-state regime switching lognormal (RSLN2), where stock returns at any point in time 

are selected from one of two regimes.  The specific regime at each moment is dictated by 

transition probabilities.  It is typical that one regime is characterized by low uncertainty 

and better stock performance while the other regime has considerable volatility in returns.  

Extensions of the regime switching model are possible as well, including varying the time 

dimension of each period (daily vs. monthly) or incorporating more regimes.  The 

RSLN2 model has received significant publicity by life actuaries.  In fact, the original set 

of scenarios released by the LCAS in 2002 [5] was based on the RSLN2 model. 

• Stochastic log volatility (SLV), where (log) volatility is a mean-reverting process with 

constant variance.   

 

4. Model Specifications  

Two key financial variables of economic models used by insurers are nominal interest rates and 

equity returns.  This section provides details of both the CAS-SoA financial scenario model and 

the LCAS’s 10,000 scenarios.  For reference, the attached Appendix lists and identifies each of 

the variables included in both scenario generators. 

 

4.1 Interest Rates – CAS-SoA Model 
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In the CAS-SoA model, the nominal interest rate is developed from the combined effects of the 

inflation rate and the real interest rate, each of which is modeled separately.   

Inflation (denoted by q) is assumed to follow an Ornstein-Uhlenbeck process of the form 

(in continuous time): 

qqtqqt dBdtqdq σµκ +−= )(     (1) 

The simulation model samples the equivalent discrete form of this process: 

tqtt

ttqqq

qqtqqq

qqtqqtt

∆+⋅∆−+⋅∆=

∆+∆−+=+

σεκµκ

σεµκ

)1(

)(1
   (2) 

From (2), we can see that the expected level of future inflation is a weighted average of the most 

recent value of inflation (qt) and a mean reversion level of inflation, µq.  The weight put on the 

mean reversion level is based on the speed of reversion coefficient parameter κq.  In the 

continuous model, mean reversion can be seen by considering the first term on the right-hand 

side of (1), called the drift of the process.  If the current level of inflation (qt) is above the 

average, the drift is negative.  In this case, the first equation predicts that the expected change in 

inflation will be negative; that is, inflation is expected to fall. The second term on the right-hand 

side represents the uncertainty in the process.  In equation (2), this uncertainty is modeled using 

qε , which is a random draw from a standardized normal distribution.  The amount of uncertainty 

is scaled by the volatility parameter qσ , which is assumed to be constant over time.  In the 

continuous time model (1), the random nature of inflation is based on the changes in a Brownian 

motion ( qdB ). 

The following parameters are used as the “base case” in the model.  See Ahlgrim et al [3] 

for details about the parameter selection process.  
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κq µq σq q0 
0.40 4.8% 4.0% 1.0% 

 

Real interest rates are derived from a simple case of the two-factor Hull-White model 

[13].  In this model, the short-term rate (denoted by r) reverts to a long-term rate (denoted by l) 

that is itself stochastic.  The stochastic factors are updated over time, analogous to the situation 

for inflation presented above. 
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The discrete analog of the model is: 
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In its discrete form, the expected future short rate is a weighted average between the current level 

rt and the (stochastic) mean reversion factor lt.  The mean reversion level is itself changing; it is a 

weighted average of some long-term mean ( lµ ) and its current value.  

Fisher [8] provides a thorough presentation of the interaction of real interest rates and 

inflation and their effects on nominal interest rates.  He argues that nominal interest rates 

compensate investors not only for the time value of money, but also for the erosion of purchasing 

power that results from inflation.  Therefore, when pricing bonds in the CAS/SoA model (i.e., 

determining the term structure of nominal interest rates), investors’ expectations for inflation and 

real interest rates over the investment horizon must first be derived.  

Using an Ornstein-Uhlenbeck process, Vasicek [16] provides closed-form solutions for 

bond prices of all maturities which are simple functions of the underlying process parameters.  
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Therefore, under a stochastic inflationary environment, we denote bond prices at time t  with a 

maturity of )( tT −  as ),( TtPq .  See Hull [12] for the analogous solutions for the real interest 

rate process (denoted here as ),( TtP r ).  Nominal interest rates are then determined by 

combining the individual effects of inflation and real interest rates over a bond’s maturity: 

),(),(),( TtPTtPTtP qri ×=  

The following parameters are used in CAS-SoA model for real interest rates: 

κ1 µl σ1 κ2 σ2 r0 l0 
1.0 2.8% 1.00% 0.1 1.65% 0.0% 0.7% 

 
 

4.2 Interest Rates – Academy Model 

While the CAS-SoA model develops nominal interest rates by combining the inflation 

and real interest rate processes, in the AAA scenarios, nominal interest rates are modeled 

directly.  Appendix 3 of the Phase I report provides some background on the development of the 

interest rate model used to develop their 10,000 scenarios.  According to the report, the goal of 

their model is to “reproduce as closely as possible certain historical relationships and patterns” 

including “minimum and maximum interest rates, the number and length of interest rate 

inversions, and the absolute and relative distribution of interest rates.”   

Given the inherent focus of RBC on the tails of the distribution, the Academy rejected 

simple distributional assumptions for interest rates including normal and lognormal models.  As 

noted in their report, historical interest rate movements had been more “peaked” and “fat-tailed” 

than those suggested by either distribution, in addition to other shortcomings exhibited by those 

distributions.   
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To generate interest rate scenarios, the Academy uses a stochastic (log) volatility model 

with mean reversion.  This interest rate model incorporates changes in three different variables:  

• tl , (the log of) the long-term rate,  
• tϕ , the spread of long-term rates over short rates, and  
• tν , (the log of) the volatility of the long-term rate.  

 
Each of these variables in the Academy’s model is assumed to follow a mean reverting process.  

The Academy’s model has been developed specifically for discrete time simulation; new 

observations for volatility are generated annually while both the long rate and the spread are 

sampled monthly.  The continuous time equivalent of the model is1: 

   ( ) l
ll ll ttttt dBadtd νϕθκ ++−= ln)(ln     (3) 

                             ( ) ϕ
ϕϕϕ σϕθκϕ tttt dBbdtd ++−= l                    (4) 

( ) ν
ννν σνθκν ttt dBdtd +−= 22 ln)(ln                (5) 

 
,, ϕθθl  and vθ  are levels of mean reversion for the long-rate, spread, and volatility respectively. 

κ  represents the speed of reversion and σ  represents the volatility of the processes.  a  and b  

are constants.  l
tB  and ϕ

tB  represent two standard Brownian motions that are correlated with 

each other, while ν
tB  is an independent Brownian motion.  

Equation (3) shows that the mean reverting process for the long-term rate has stochastic 

volatility.  The volatility of the long rate follows a Gaussian process with constant variance as 

shown in Equation (5).  The spread process shown in equation (4) has constant variance.  In 

equations (3) and (4), the existing spread influences the movement of the long rate while the long 

rate impacts the future spread.  These simultaneous equations indicate that the level of interest 

                                                 
1 The Academy’s original model was presented in discrete form, but is presented here in its continuous time 
equivalent to highlight the similarities and differences between the two actuarial scenario generators.  Rather than 
duplicate all of the details of the Academy model here, interested readers are referred to Appendix III of the Phase I 
report of the Academy [4].   
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rates and the spread between long and short interest rates are influenced by the current shape of 

the term structure.   

To create 10,000 scenarios, the AAA sampled long-term interest rates and the yield curve 

spread (equations (3) and (4)) at monthly intervals and sampled the variance of interest rates 

(equation (5)) at annual intervals based on the following parameters: 

Long Rate Process 

lκ  0.0048 

lθ  104.0ln  
a 0.21 

 

Spread Process 

ϕκ  0.042 

ϕθ  -0.0261 

ϕσ  0.0038 

b -0.0024  

Long Rate Volatility Process 

νκ  0.347 

νθ  -6.92 

νσ  0.59 
 

 

In contrast to the CAS-SoA model, closed form solutions for the entire term structure are 

not used with the Academy model.  Instead, the Academy develops the yield curve from the 

sampled long- and short-rates from the model.  Then, using an iterative procedure, individual 

interest rates on the term structure are interpolated based on historical relationships among 

various forward rates (see Appendix III of the Phase I report [4] for details).   

 
4.3 Equity Returns – CAS-SoA Model 
 

The CAS-SoA model uses a regime switching equity return model, following the 

approach of Hardy [10].  In this model, at any point in time, stock returns are generated from one 

of two lognormal distributions called regimes, one with low volatility and one with high 

volatility.  The CAS-SoA model uses the excess equity returns which is added to the modeled 

nominal interest rate for each period to get ts , the equity return at time t .   

),(~|ln
tt

Nx

xqrs

tt

tttt

ρρ σµρ

++=
     (6) 

 



 -  - 15 

Here, tρ  represents the regime which dictates the specific distribution of excess returns ( tx ) at 

time t .  While more regimes could be incorporated in the model, Hardy’s [10] work shows that 

two regimes appear sufficient for both US and Canadian data.  Therefore, the CAS-SoA model 

uses two regimes ( =tρ 1 or 2). The parameters for large stocks are shown on Table 1. 

With the regime switching model, when investors perceive increased uncertainty in the economy, 

the stock process switches to the high volatility regime.  As a result, investors’ increased level of 

risk aversion leads to falling stock prices (on average).  However, given the high uncertainty, 

stock prices are quite volatile during these times.  As investors gather more information and 

sense normal economic times returning, there is a probability of switching to the low volatility 

regime.    

 

4.4 Equity Returns – Academy Model 

The initial guidance by the LCAS [5] also used the regime-switching lognormal process 

for stock returns.  However, in the June 2005 report [6], the committee released new scenarios 

based on a stochastic log volatility (SLV) model.  The continuous time equivalent of this model 

is: 

[ ] s
tttt dBvdtSd += µ      (7) 

( ) [ ] v
tvtt dBdtvvd στφ +−×= lnlnln     (8) 

2
ttt CvBvA ++=µ      (9) 

 
The major feature of the SLV model is that (log) volatility follows an Ornstein-Uhlenbeck 

process with mean reversion level τ  and constant volatility vσ  (see Eq. (8)).  The AAA model 

constrains the volatility process with upper and lower bounds.  Equation (9) relates the drift in 

stock prices to the current level of volatility where A, B, and C are constants.  The parameters are 
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chosen where 0>B  and 0<C .  The quadratic form of the drift assumption captures two 

concepts.  First, mean-variance efficiency suggests that markets with higher uncertainty receive 

extra compensation ( 0>B ).  Second, given the discrete sampling of the Academy’s scenarios, 

the quadratic drift captures the effects of volatility on continuously compounded returns.  

Specifically, the geometric average return over any specific time horizon declines as volatility 

increases.  Thus, 0<C .  This risk-return relationship is a bit more complex than the typical two-

stage regime switching model, which often proposes lower returns in the high volatility regime.   

 Similar to the interest rate process, the Academy created its scenarios based on monthly 

sampling of equations (7)-(9) and the following parameters (see the Phase II report from June 

2005 [6] for details): 

φ  τ  
νσ  A B C 

0.35 0.125 0.33 0.055 0.56 -0.90 
 

 

5. Comparison of Results 

The approaches used for the CAS–SoA and AAA models both have theoretical support, but are 

quite different from each other.  In order to understand these models and when they could be 

used, it is important to view the values each model generates.  Output from the CAS-SoA 

economic model and the AAA RBC C-3 pre-packaged scenarios are compared in several ways.  

Tables list the basic statistics for 10,000 iterations of the CAS-SoA model and the full sample of 

the 10,000 prepackaged scenarios provided by the AAA RBC C-3 project, along with historical 

data for the relevant variable.  Two types of graphs illustrate the relationship between the two 

sets of output.  One set of graphs displays Redington’s [15] funnel of doubt graphs over time, 

showing the 1st, 25th, 50th, 75th and 99th percentile values for the output distributions from 
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their initial values out through 20 years.  This format allows easy comparison of the dispersion 

reflected in each model.  The other type of graph displays a histogram of the model values one 

year after the start of the simulation, along with historical values of the corresponding variable.  

These graphs provide a more detailed analysis of the distribution of each variable at a particular 

point on the funnel of doubt graphs, in this case after one year. 

This comparison indicates significant differences between the two models, especially for 

interest rates.  Based on Table 2, the mean value of the 3 month nominal interest rate for the 

CAS-SoA model after one year, at 3.28%, demonstrates faster reversion to the long run mean 

than is reflected in the AAA RBC C-3 scenarios, at 2.97%.  The standard deviation of the CAS-

SoA model is 2.7%, is much higher than the AAA RBC C-3 scenarios, at 1.4%, and the  

skewness of the CAS-SoA model is .620, compared to .249 for the AAA model.  Based on each 

value, the CAS-SoA model produced results closer to the historical (1934-2006) values.  The 

only statistic for which the CAS-SoA model did not produce closer agreement was for kurtosis, 

which in both models is negative (-.230 and -.189), compared to the historical value of .970. 

Figure 1 illustrates the differences in levels and dispersion for the 3 month nominal 

interest rate of the two models over a 20 year horizon.  Both models start at approximately the 

same level (CAS-SoA at 1.0% and the AAA at 1.21%), but the CAS-SoA model increases faster 

and to a higher level with greater dispersion. 2  Even after 20 years, the AAA scenarios indicate a 

less than 1% chance of 3 month interest rates exceeding 13%, even though this value has been as 

high as 16% within the last 30 years.  The histogram displayed on Figure 2 shows the 

distribution of 3 month nominal interest rates after one year.  The values for the AAA scenarios 

                                                 
2 Immediately, readers may be drawn to the change in the slope of the funnel of doubt graphs (Figures 1 and 3).  
This can be explained by considering the time intervals illustrated in these graphs.  The first half of these figures 
shows results at shorter (monthly) intervals.  The second half of the figure indicates results at longer horizons.  The 
“kink” in the middle of these graphs reflects the shift from monthly to annual intervals. 
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are almost entirely within the range of 1-5%.  The CAS-SoA model has a much wider 

distribution, although not as wide as the historical values.    

Comparing the results for the 10 year nominal interest rates produces a similar pattern.  

From Table 3, the CAS-SoA values have a higher mean, 5.1% to 4.6%, and standard deviation, 

1.3% to 0.7%, than the AAA scenarios.  Actual values are only available for this data series from 

1953-2006, with a mean of 6.5%.  Neither model generates values for kurtosis or skewness that 

are close to the limited period of historical values that are available, but the signs of the AAA 

scenarios are both positive, in line with actual values.  The funnel of doubt graphs on Figure 3 

are both higher and wider for the CAS-SoA values than the AAA scenarios, except after 15 

years.  After this point, the AAA scenarios produce a 99th percentile value above the values the 

CAS-SoA model produces, but the 50th and 75th percentile values are still lower.  Figure 4 

shows the distribution of the CAS-SoA model is wider than the AAA scenarios.  Both are much 

lower than the historical values shown on the figure.  However, this discrepancy might not be a 

problem.  Current interest rates, which are low by historical standard, are used as the starting 

point for both interest rate models.  Despite mean reversion, high interest rates are less likely to 

occur within a year than they would be if interest rates were starting at a higher level.  However, 

from July, 1980 to July, 1981, 10 year interest rates increased by 403 basis points, so the limited 

range of the AAA model might be considered too restricted. 

Table 4 provides the basic statistics for large stock total returns for both models and for 

historical values, based on the S&P 500 and its predecessor, the Cowles Index.  The mean of the 

CAS-SoA model is 8.7%, and the mean for the AAA scenarios is 9.0%, both close to the 

historical values of 10.4%.  The standard deviation of the CAS-SoA model, at 22.1%, is higher 

than the AAA scenarios, at 16.6%, and the historical values, at 17.8%.  The effect of the larger 
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standard deviation is evident in the 99th and 1st percentile values (largest 100 and smallest 100).  

These values are 62.7% and -52.6% for the CAS-SoA model, but only 51.7% and -30.0% for the 

AAA scenarios.  The AAA scenarios are in line with the largest and smallest returns of the S&P 

500 over the 135 year period, 53.8% and -31.2%.   

The funnel of doubt graphs of Figure 5 narrow over time, rather than expand, due to the 

way stock returns are generated in the two models.  Stock return values represent the cumulative 

average annual returns from investing in large stocks over the indicated time period.  This 

produces a portfolio effect over time, as large gains, or losses, in one year are likely to be 

moderated by the returns of the remaining years in the investment horizon.  Thus, the funnel of 

doubt is inverted, with returns more predictable for a 20 year investment horizon than for a 

single year.  Since the standard deviation of returns is smaller under the AAA approach, the 

compounded average returns over longer periods converge more quickly.  This difference is the 

result of the different approaches to the model, with the CAS-SoA model using regime switching 

and the AAA model based on the stochastic log volatility model.  The histogram on Figure 6 for 

large stock returns after one year (which are measured similarly for both models) illustrate the 

similar dispersion for the two models, both in line with actual values.   

The results for small stock returns are indicated on Table 5.  In this case the CAS-SoA 

results are closer to historical values.  The mean value of the CAS-SoA model is 13.6%, 

compared with a mean of the AAA model of 10.3% and the historical mean of 17.5%.  The 

standard deviation of the CAS-SoA model, at 35.1% is closer than the AAA scenarios, at 22.6%, 

to the historical value of 33.1%.  The 99th and 1st percentile values are 129.7% and -61.8% for 

the CAS-SoA and 70.7% and -39.6% for the AAA.  In this case the CAS-SoA results are closer 

to the historical range of 142.9% and -58.0% over a 79 year period.  The greater initial dispersion 
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of the CAS-SoA model is evident on Figure 7.  The histogram on Figure 8 provides another 

illustration of the greater dispersion of the CAS-SoA model. 

Although the goal of each model is to provide a reasonable distribution of potential future 

financial values, which cannot be quantified ex ante, it is possible to compare the output from the 

models to historical data to measure how well the models fit past experience.  Two quantitative 

metrics are used to test how closely the output from the models conforms to historical values. 

The Kolmogorov-Smirnov (K-S) test measures whether two datasets, in this case output from 

each model and actual observations, are significantly different.  This test does not depend on 

knowing the distribution of the underlying data, and therefore is not as sensitive as tests based on 

specific distributions.  The second test is the Chi-square test that compares the distribution of 

output from the model to the distribution of actual observations.   

It should be noted that the models were not developed solely to replicate history.  Instead, 

the models are intended to provide a reasonable framework for understanding potential future 

uncertainty.  Often, when choosing parameters for economic and financial models, users often 

exploit historical relationships in time series data.  Any test statistic that measures historical fit is 

influenced by the weight given to past data.  When parameters are selected entirely from 

historical movements, statistical fit is likely to be affected.  In particular, historical fit is likely to 

look better if there is significant overlap between the time period used for parameter estimation 

and the time period used to measure historical fit.  Readers should keep this in mind when 

looking at measures of fit across competing models.   

The K-S test is illustrated graphically for 3 month nominal interest rates on Figure 9.  The 

cumulative distributions for historical interest rates and both models (CAS-SoA and AAA) are 

shown.  The K-S test metric D is the maximum vertical difference between the cumulative 
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distribution of the actual data and cumulative distribution of each model.  By comparing the D 

values for the two different models, we can determine which model produces the better fit.  

Based on Figure 9, the CAS-SoA model has a lower D and thus provides a better fit to historical 

observations for 3-month interest rates.  In running this test, ten subsets of 1,000 observations 

each were drawn from the two models and the D values calculated for each subset.  The results 

are displayed in Table 6.  For each variable, 3 month and 10 year interest rates and large and 

small stocks, the CAS-SoA model generated lower D values and therefore produced a better fit. 

      Secondly, the chi-square method is used to test the difference between the model 

output and actual values.  The chi-square measure is the squared difference between observed 

frequency (O) and the expected frequency (E), and then divided by the expected frequency.  In 

this case, observed frequency is the distribution of historical interest rates or equity returns.  

Expected frequency is the distribution of model values from the underlying “known” 

distributions as generated from CAS-SoA or AAA-C3 models.  The sum of the differences 

between these values from each of the multiple frequency intervals (42 bins based on 50 basis 

point intervals for interest rates and 17 bins (for large stocks) or 29 bins (for small stocks) based 

on 500 basis point intervals for equity returns) is the chi-square statistic, as shown in equation 

(10).   

( )∑ −
=

E
EO 2

2χ
                                                            (10) 

The results of chi-square test on both models are shown in Figure 10.  For all cases the 

null hypothesis (that the model and observations are drawn from the same distribution) is 

rejected at the 10 percent level.  However, the models do generate slightly different values for 

this metric.  In general, the AAA model produces interest rates that correspond more closely to 

historical distributions whereas the CAS-SoA model generates equity returns that correspond 
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more closely with historical values.  The objective of the models, though, is to project the 

potential distribution of future interest rates and equity returns, not to replicate distributions of 

historical values.   

 

6. Cash Flow Testing 

In order to illustrate the differences between the CAS-SoA Financial Scenario Model and the 

AAA C3 Model, two simple examples are demonstrated here.  The first example is a $100,000 

face value single premium ten year term life insurance policy for a 35 year old male.  The net 

premium of $2,423 is determined by discounting the death benefits assuming 1980 CSO 

mortality rates and an interest rate of 3.5%.  The single premium is invested in a portfolio that is 

allocated 50% to 3 month Treasury bills, 25% to large stocks and 25% to small stocks.  The 

investment performance of each category is based on 10,000 iterations of the competing financial 

models.  At the end of each year, death benefits are paid based on the assumed mortality table.  

In this simplified example, only the investment performance is assumed to be stochastic; a more 

realistic example would incorporate stochastic mortality rates, company expenses, and policy 

cancellations.  However, these situations are beyond the scope of this project. 

The results of this exercise are shown as funnel of doubt graphs on Figures 11-A and 11-

B, and numerically on Tables 7-A and 7-B.  The CAS-SoA model generates a higher mean value 

at the end of each year, a much wider range and a greater chance of the net premium proving 

inadequate in every year except year 10.  At the end of ten years, the mean value of the insurer’s 

surplus is $1700 based on the CAS-SoA model and $574 based on the AAA C3 model.  This 

positive surplus is not surprising given that, on average, the insurer is expected to earn more than 

the assumed 3.5% used in the calculation of premiums.  In addition, since the CAS-SoA model 
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projects higher interest rates and higher returns on small stocks, the insurer’s surplus position 

would increase, on average.  However, in 22.0% of the iterations for the CAS-SoA model and 

26.9% of the iterations for the AAA C3 model, the projected surplus of the life insurer was 

negative, indicating a loss was incurred on the policy.  The higher expected returns 

notwithstanding, the greater volatility represented by the CAS-SoA model produces a large 

portion of cases where the premium is inadequate for the coverage provided.     

The second example is based on property- liability loss reserve situation.  In this case a 

loss reserve of $10 million is established, which is supported by $10 million in assets, as 

property- liability insurance accounting does not permit discounting of loss reserves.  The assets 

are invested in the same portfolio used for the life insurance example (50% 3 month Treasury 

bills, 25% large stocks and 25% small stocks).  The loss payments are $1 million per year, paid 

at the end of each year for ten years.  (More realistic loss payout patterns could be substituted for 

this uniform set of payments, but the purpose of this example is only to indicate an approach to 

compare the two models, and is not dependent on a specific payout pattern.  As in the prior 

example, stochastic loss payouts should be incorporated in actual cash flow tests.)  The funnel of 

doubt graphs on Figures 12-A and 12-B and the numerical values on Tables 8-A and 8-B show 

the residual value of the portfolio each year.  In both cases, the investment returns, on average, 

are large enough to pay all the losses over the ten years, with a mean residual value of $10.4 

million for the CAS-SoA model and $5.5 million for the AAA C-3 model.  The dispersion of the 

residual value at the end of ten years is much greater for the CAS-SoA model, with a standard 

deviation of $9.9 million, compared to $3.7 million for the AAA C-3 model.  In 6.3% of the 

iterations for the CAS-SoA model and in 2.8% of the iterations for the AAA C3 model, the 
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residual values at the end of ten years were negative.  In these cases, even undiscounted loss 

reserves would be inadequate to cover the liabilities. 

The striking differences in results illustrated above clearly demonstrate the importance of 

selecting an appropriate model for use in cash flow testing.  Solvency margins, pricing strategies, 

capital allocations and investment strategies all depend on using va lid models for economic 

conditions.  That two models, both developed around the same time for similar purposes and 

using comparable approaches for modeling interest rates and equity movements, can produce 

such widely divergent results emphasizes the care that must be taken in developing, 

parameterizing, and applying financial models to insurance operations.  Just using a stochastic 

model is not sufficient.  The model must be a valid one, with parameters that reflect current 

economic conditions, and applied appropriately.            

 

7. Conclusions  

Both the CAS-SoA model and the AAA prepackaged scenarios provide values for interest rates 

and equity returns that can be used in actuarial modeling.  The different approaches used in each 

procedure lead to significant differences in the resulting output.  The CAS-SoA model leads to a 

wider set of distributions, especially for interest rates, than the AAA scenarios.  Before adopting 

either approach, the user should understand the factors considered by each model and how their 

specific application may be affected by the output.   
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Table 1 

 CAS-SoA Model 
Large Stock Parameters – Regime Switching Model 

Parameter Low Volatility Regime High Volatility Regime 
Mean 0.8% -1.1% 

Standard Deviation 3.9% 11.3% 

Probability of Switching 1.1% 5.9% 
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CAS-SoA 
Economic Model

AAA RBC C-3 
Scenarios (*)

Actual (01/34-
01/06)

Mean 0.0328 0.0297 0.0391
Median 0.0298 0.0293 0.0352
Standard Deviation 0.0273 0.0140 0.0318
Kurtosis -0.2302 -0.1894 0.9699
Skewness 0.6196 0.2492 0.9462
Minimum 0.0000 0.0020 0.0001
Maximum 0.1528 0.0910 0.1630
99th Percentile 0.1038 0.0635 0.147
75th Percentile 0.0514 0.0391 0.0566
25th Percentile 0.0078 0.0197 0.0114
1st Percentile 0.0000 0.0031 0.0003

Table 2
Descriptive Statistics - 3 Month Nominal Interest Rates (1st projection year)

 
* Source: http://www.actuary.org/life/phase2.asp 

3-month U.S. Treasury yields 
 

CAS-SoA 
Economic Model

AAA RBC C-3 
Scenarios (*)

Actual (04/53-
01/06)

Mean 0.0513 0.0455 0.0653
Median 0.0513 0.0452 0.0618
Standard Deviation 0.0131 0.0069 0.0271
Kurtosis -0.0381 0.7320 0.5169
Skewness -0.0301 0.4216 0.8865
Minimum 0.0048 0.0231 0.0229
Maximum 0.0998 0.0822 0.1532
99th Percentile 0.0818 0.0640 0.1428
75th Percentile 0.0603 0.0497 0.0791
25th Percentile 0.0424 0.0408 0.0423
1st Percentile 0.0210 0.0312 0.0238

Table 3
Descriptive Statistics - 10 Year Nominal Interest Rates (1st projection year)

 
* Source: http://www.actuary.org/life/phase2.asp 

10-year U.S. Treasury yields 
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CAS-SoA 
Economic 

Model
AAA RBC C-3 
Scenarios (*)

Actual (1871-
2006)

Mean 0.0872 0.0895 0.1044
Median 0.0928 0.0886 0.0996
Standard Deviation 0.2205 0.1661 0.1781
Kurtosis 4.9511 0.7003 0.0407
Skewness 0.3639 0.1785 -0.0266
Minimum -0.7775 -0.5904 -0.4310
Maximum 2.2324 0.9203 0.5488
99th Percentile 0.6266 0.5173 0.5378
75th Percentile 0.2111 0.1895 0.2107
25th Percentile -0.0295 -0.0157 -0.0235
1st Percentile -0.5259 -0.2999 -0.3119

Table 4
Descriptive Statistics - Large Stock Returns

 
* Source: http://www.actuary.org/life/phase2.asp 

Diversified large cap U.S. equity 
 
 

CAS-SoA 
Economic 

Model
AAA RBC C-3 
Scenarios (*)

Actual (1926-
2004)

Mean 0.1358 0.1028 0.1752
Median 0.1084 0.0965 0.1975
Standard Deviation 0.3506 0.2255 0.3313
Kurtosis 12.5445 0.9684 1.8721
Skewness 1.8007 0.3581 0.5787
Minimum -0.8212 -0.7136 -0.5801
Maximum 4.9939 1.4527 1.4287
99th Percentile 1.2972 0.7069 1.4287
75th Percentile 0.2954 0.2380 0.3875
25th Percentile -0.0587 -0.0448 -0.0539
1st Percentile -0.6181 -0.3961 -0.5801

Table 5
Descriptive Statistics - Small Stock Returns

 
* Source: http://www.actuary.org/life/phase2.asp 

Intermediate risk equity 
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Table 6 

Kolmogorov-Smirnov Test D Values  
 CAS-SoA    AAA C-3 

Data 
Subset 3m NIR  10y NIR 

Large 
SR 

Small 
SR  

Data 
Subset 3m NIR  10y NIR 

Large 
SR 

Small 
SR 

1 0.1626 0.3138 0.0525 0.1306  1 0.2733 0.5265 0.0943 0.1987 
2 0.1748 0.3152 0.0587 0.128  2 0.2935 0.5375 0.0796 0.1943 
3 0.201 0.3276 0.0822 0.143  3 0.3109 0.5575 0.0992 0.203 
4 0.175 0.3186 0.0917 0.155  4 0.2992 0.5395 0.1062 0.205 
5 0.167 0.3316 0.0678 0.129  5 0.2882 0.5325 0.0992 0.1827 
6 0.178 0.3267 0.0772 0.161  6 0.2892 0.5285 0.0902 0.19 
7 0.188 0.324 0.0632 0.159  7 0.2916 0.534 0.1102 0.2073 
8 0.171 0.3246 0.0678 0.122  8 0.2622 0.511 0.0942 0.2133 
9 0.195 0.3252 0.0636 0.1323  9 0.2972 0.5385 0.1026 0.2093 

10 0.1683 0.3059 0.0656 0.1431  10 0.2932 0.5212 0.093 0.1954 
Average 0.17807 0.32132 0.06903 0.1403  Average 0.28985 0.53267 0.09687 0.1999 
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Year 1 2 3 4 5 6 7 8 9 10

Mean 2,381 2,351 2,326 2,302 2,270 2,219 2,120 2,017 1,877 1,700

Median 2,357 2,315 2,260 2,200 2,127 2,016 1,856 1,678 1,450 1,170

Standard Deviation 325 485 646 827 1,021 1,221 1,459 1,715 2,013 2,360

Kurtosis 7.069 3.406 2.429 2.934 3.312 3.108 4.162 5.284 6.559 9.006

Skewness 1.230 0.913 0.925 1.072 1.221 1.283 1.493 1.675 1.878 2.156

Minimum 1,352 994 559 300 -15 -326 -724 -1,077 -1,687 -2,386

Maximum 6,583 6,836 7,166 10,373 10,576 10,604 14,192 18,166 22,049 27,662

# of Negative Values 0 0 0 0 1 14 142 534 1,254 2,203

99th Percentile 3,371 3,793 4,222 4,824 5,473 6,247 7,061 8,045 8,970 10,091

75th Percentile 2,550 2,620 2,682 2,739 2,803 2,852 2,823 2,792 2,722 2,633

25th Percentile 2,184 2,031 1,889 1,730 1,554 1,356 1,094 834 507 115

5th Percentile 1,905 1,637 1,404 1,163 911 660 317 -21 -417 -887

1st Percentile 1,699 1,383 1,120 868 574 272 -77 -441 -872 -1,385

10% TCE 1,873 1,600 1,362 1,120 870 603 277 -69 -471 -942

Projected Surplus - Life Insurance Example Based on the CAS-SoA Model
Table 7-A

 
 

Year 1 2 3 4 5 6 7 8 9 10

Mean 2,358 2,281 2,184 2,065 1,918 1,738 1,497 1,238 932 574

Median 2,351 2,264 2,161 2,023 1,862 1,673 1,417 1,143 826 457

Standard Deviation 225 321 401 476 547 614 680 747 813 879

Kurtosis 0.747 0.358 0.486 0.624 0.670 0.884 1.272 1.439 1.649 1.944

Skewness 0.323 0.341 0.422 0.535 0.618 0.704 0.807 0.875 0.936 0.997

Minimum 1,479 1,276 1,001 787 494 203 -180 -553 -1,041 -1,610

Maximum 3,563 3,687 3,963 4,700 4,688 5,063 5,730 5,600 5,782 6,371

# of Negative Values 0 0 0 0 0 0 11 170 1,003 2,686

99th Percentile 2,960 3,126 3,272 3,380 3,471 3,518 3,461 3,482 3,372 3,296

75th Percentile 2,494 2,482 2,429 2,357 2,240 2,101 1,883 1,652 1,376 1,046

25th Percentile 2,212 2,065 1,906 1,730 1,532 1,309 1,018 714 365 -39

5th Percentile 2,004 1,784 1,565 1,346 1,124 857 537 195 -189 -624

1st Percentile 1,859 1,597 1,350 1,125 870 592 266 -87 -484 -945

10% TCE 1,981 1,752 1,535 1,318 1,082 818 495 157 -227 -668

Projected Surplus - Life Insurance Example Based on the AAA-C3 Model
Table 7-B
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Year 1 2 3 4 5 6 7 8 9 10

Mean 9.72 9.54 9.45 9.43 9.48 9.56 9.70 9.89 10.12 10.42

Median 9.62 9.39 9.18 9.01 8.89 8.74 8.61 8.49 8.32 8.20

Standard Deviation 1.34 1.99 2.64 3.38 4.17 5.00 6.00 7.09 8.39 9.92

Kurtosis 7.07 3.44 2.44 2.95 3.33 3.10 4.15 5.23 6.45 8.82

Skewness 1.23 0.92 0.93 1.08 1.22 1.28 1.49 1.67 1.87 2.14

Minimum 5.48 3.97 2.23 1.26 0.14 -0.86 -1.95 -2.92 -4.06 -5.72

Maximum 27.07 28.06 29.24 42.40 43.41 43.87 59.40 76.55 93.58 118.20

# of Negative Values 0 0 0 0 0 5 32 131 321 631

99th Percentile 13.81 15.49 17.22 19.72 22.60 26.05 30.04 34.49 39.61 46.00

75th Percentile 10.42 10.65 10.91 11.22 11.65 12.17 12.60 13.10 13.70 14.41

25th Percentile 8.91 8.23 7.66 7.10 6.55 6.02 5.49 4.99 4.39 3.69

5th Percentile 7.76 6.61 5.68 4.79 3.93 3.18 2.29 1.47 0.57 -0.39

1st Percentile 6.91 5.57 4.51 3.57 2.55 1.62 0.70 -0.28 -1.32 -2.38
10% TCE 7.63 6.46 5.51 4.61 3.76 2.95 2.12 1.26 0.35 -0.64

Table 8-A
Property-Liability Loss Reserve Example Based on the CAS-SoA Model

 

Year 1 2 3 4 5 6 7 8 9 10

Mean 9.63 9.26 8.87 8.47 8.04 7.59 7.13 6.63 6.10 5.54

Median 9.60 9.19 8.78 8.30 7.82 7.32 6.80 6.24 5.66 5.02

Standard Deviation 0.93 1.32 1.64 1.95 2.24 2.52 2.80 3.09 3.39 3.69
Kurtosis 0.75 0.36 0.49 0.63 0.67 0.88 1.27 1.44 1.65 1.97

Skewness 0.32 0.34 0.42 0.54 0.62 0.70 0.81 0.88 0.94 1.01

Minimum 6.00 5.14 4.04 3.26 2.23 1.32 0.20 -0.80 -1.84 -2.99

Maximum 14.60 15.03 16.16 19.29 19.34 21.24 24.50 24.67 26.38 30.00

# of Negative Values 0 0 0 0 0 0 0 10 72 280

99th Percentile 12.11 12.74 13.32 13.84 14.40 14.91 15.20 15.98 16.36 16.87

75th Percentile 10.19 10.09 9.87 9.66 9.36 9.08 8.72 8.36 7.95 7.55

25th Percentile 9.02 8.37 7.74 7.10 6.46 5.84 5.16 4.45 3.73 2.95

5th Percentile 8.17 7.22 6.33 5.53 4.79 3.98 3.18 2.32 1.46 0.55

1st Percentile 7.57 6.45 5.45 4.63 3.76 2.90 2.06 1.15 0.14 -0.84

10% TCE 8.07 7.09 6.21 5.42 4.62 3.82 3.01 2.16 1.28 0.36

Property-Liability Loss Reserve Example Based on the AAA-C3 Model
Table 8-B
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Figure 1 
Funnel of Doubt Graphs 

3 Month Nominal Interest Rates (U. S. Treasury 
Bills)

CAS-SOA Economic Model
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Figure 2 

Histogram of 3 Month Nominal Interest Rates 
Model Values and Actual Data (01/34-01/06) 
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Figure 3 

Funnel of Doubt Graphs  
10 Year Nominal Interest Rates (U. S. Treasury Bonds)  

CAS-SOA Economic Model

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m11m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 20y

AAA RBC C-3 Scenarios

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 20y

99th 75th 50th 25th 1st
 

 



 -  - 36 

Figure 4 
Histogram of 10 Year Nominal Interest Rates  
Model Values and Actual Data (04/53-01/06) 
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Figure 5 
Funnel of Doubt Graphs  

Large Stock Return (US Equity) 
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Figure 6 
Histogram of Large Stock Return 

Model Values and Actual Data (1872-2006) 
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Figure 7 
Funnel of Doubt Graphs  

Small Stock Return (Intermediate Risk Equity) 
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Figure 8 

Histogram of Small Stock Return 
Model Values and Actual Data (1926-2004) 
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Figure 9 
3 Month Nominal Interest Rates 

K-S Test Results 
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Figure 10 

Chi-Square Test 
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Figure 11-A
 Life Insurance Example - CAS-SoA Model
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Figure 11-B
 Life Insurance Example - AAA C3 Model
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Figure 12-A
 Property-Liability Loss Reserve Example - CAS-SoA Model
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Figure 12-B
 Property-Liability Loss Reserve Example - AAA C3 Model
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APPENDIX 
List of Variables in Actuarial Scenario Generators 

Panel A: CAS-SoA Model 
 
 

Inflation Process 
qqtqqt dBdtqdq σµκ +−= )(  

tq  Value of inflation at time t  

qµ  Reversion level of inflation process 

qκ  Speed of reversion 

qσ  Volatility of inflation process 
 

Real Interest Rate Process 

222

111

)(
)(

dBdtldl
dBdtrldr

tlt

ttt

σµκ
σκ

+−=
+−=

 

tr  Value of (instantaneous) real interest rate at time t  

1κ  Speed of reversion of real interest rate 

1σ  Volatility of real interest rate 

tl  Value of reversion level of interest rate at time t  

lµ  Mean value of reversion level 

2κ  Speed of reversion to mean value 

qσ  Volatility of reversion level process 
 

Equity Return Process 

),(~|ln
tt

Nx

xqrs

tt

tttt

ρρ σµρ

++=
 

ts  (Total) equity return at time t  

tx  Excess equity return at time t  (equity risk premium) 

tρ  Regime at time t  ( tρ = 1 or 2) 
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APPENDIX (cont’d) 
List of Variables in Actuarial Scenario Generators 

Panel B: Academy Model 
 
 
 

Interest Rate Process 
( ) l

ll ll ttttt dBadtd νϕθκ ++−= ln)(ln  

( ) ϕ
ϕϕϕ σϕθκϕ tttt dBbdtd ++−= l  

( ) ν
ννν σνθκν ttt dBdtd +−= 22 ln)(ln  

tl  Value of long-term nominal interest rate at time t  

lθ  Reversion level of long-term rate process 

lκ  Speed of reversion of long-term rate process 

tν  Volatility of long-term rate process at time t  

tϕ  Value of excess of short rate over long rate at time t  
(i.e., yield curve spread) 

ϕθ  Reversion level of spread process 

ϕκ  Speed of reversion of spread process 

ϕσ  Volatility of spread process 

νθ  Reversion level of long-term rate volatility process 

νκ  Speed of reversion of long-term rate volatility process 

νσ  Volatility of long-term rate volatility process 
ba,  Coefficients estimated from history 

  

Equity Return Process 
[ ] s

tttt dBvdtSd += µ  

( ) [ ] v
tvtt dBdtvvd στφ +−×= lnlnln  

2
ttt CvBvA ++=µ  

tS  Equity return at time t  

tµ  Mean equity return at time t  (i.e., drift) 

tν  Volatility of equity return process at time t  
τ  Reversion level of equity volatility process 
φ  Speed of reversion of equity volatility process 

νσ  Volatility of equity volatility process 
CBA ,,  Coefficients estimated from history 

 
 

 


